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     INTRODUCTION
The theory of fuzzy sets was introduced by Zadeh 

[10] in 1965. Later, Chang [2] proposed fuzzy 

topology in 1967. After this, there have been several 

generalizations of notions of fuzzy sets and fuzzy 

topology. The concept of intuitionistic fuzzy sets,  

introduced by Atanassov [1] is a generalization of 

fuzzy sets. In the last 25 years various concept of 

fuzzy mathematics have been extended for 

intuitionistic fuzzy sets. Using the notion of 

intuitionistic fuzzy sets, Coker [3] introduced the 

notion of intuitionistic fuzzy topological spaces in 

1997. This approach provided a wide field for 

investigation in the area of intuitionistic fuzzy 

topology. 

                          In this paper, we introduce 

intuitionistic fuzzy regular α generalized closed set. 

We investigate some of their properties. 

 

PRELIMINARIES 
Definition 2.1:[1] An intuitionistic fuzzy set (IFS in 

short) A in X is an object having the form                 

A = {〈 x, μA(x), νA(x)〉∕ x ∊ X} where the function 

μA : X → [0,1] and νA : X → [0,1] denote the degree 

of membership (namely μA(x)) and the degree of 

non-membership (namely νA(x)) of each element x ∊ 
X to the set A, respectively, and 0 ≤ μA(x) + νA(x)   

≤ 1 for each   x ∊ X.  

Definition 2.2: [1] Let A and B be two IFSs of the 

form A = {〈 x, μA(x), νA(x)〉 ∕ x ∊ X} and                  

B  = {〈 x, μB(x), νB(x)〉 ∕ x ∊ X}. Then 

a) A ⊆ B if and only if μA(x) ≤ μB(x) and 
νA(x) ≥ νB(x) for all x ∊ X 

b) A = B if and only if A ⊆ B and B ⊆ A 

c) Ac = {〈 x, , νA(x), μA(x)〉∕x ∊ X} 

d) A ∩ B = {〈 x, μA(x) ∧ μB(x), νA(x) ∨ 
νB(x)〉∕x ∊ X} 

e) A ∪ B = {〈 x, μA(x) ∨ μB(x), νA(x) ∧ 
νB(x)〉∕x ∊ X}  

For the sake of simplicity, we shall use the notation  

A = 〈x, μA, νA〉 instead of A = {〈x, μA(x), νA(x)〉∕ x ∊ 
X}. The IFS 0~ = {〈x, 0, 1〉/ x ∊ X} and 1~ =        

{〈x, 1, 0〉/x ∊ X} are respectively the empty set and 

the whole set of X. 

Definition 2.3: [3] An intuitionistic fuzzy topology 

(IFT in short) on X is a family 𝜏 of IFS in X 

satisfying the following axioms: 

a) 0~ , 1~ ∊ 𝜏 , 
b) G1 ∩ G2 ∊ 𝜏 for any G1, G2 ∊ 𝜏 , 
c) ∪ Gi ∊ 𝜏 for any family { Gi /i ∊ J} ⊆ 𝜏. 

In this case the pair (X, 𝜏) is called an intuitionistic 

fuzzy topological space (IFTS in short) and any IFS 

in 𝜏 is known as an intuitionistic fuzzy open set 

(IFOS in short) in X. The complement Ac of an IFOS 

A in (X, 𝜏) is called an intuitionistic fuzzy closed 

(IFCS in short) in X. 

Definition 2.4: [3] Let (X, 𝜏) be an IFTS and A = 〈x, 

μA, νA〉 be an IFS in X. Then the intuitionistic fuzzy 

interior and intuitionistic fuzzy closure are defined by 

int(A) = ∪ { G / G is an IFOS in X and G ⊆ A} 
cl(A) = ∩ {K / K is an IFCS in X and A ⊆ K} 
Note that for any IFS A in (X, 𝜏), we have            

cl(Ac) = (int(A))c and int(Ac) = (cl(A))c. 

Definition 2.5: [5] An IFS A in an IFTS (X, 𝜏) is said 

to be an  

a) intuitionistic fuzzy semi closed set (IFSCS 

in short) if int(cl(A)) ⊆ A, 

b) intuitionistic fuzzy α closed set (IFαCS in 

short) if cl(int(cl(A))) ⊆ A, 
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c) intuitionistic fuzzy pre closed set (IFPCS in 

short) if cl(int(A)) ⊆ A. 

Definition 2.6: [9] An IFS A in an IFTS (X, 𝜏) is said 

to be an  

 a) intuitionistic fuzzy regular closed set (IFRCS in 

short) if A = cl(int(A)), 

 b) intuitionistic fuzzy generalized closed set (IFGCS 

in short) if cl(A) ⊆ U whenever A ⊆ U and U is an 

IFOS in X, 

c) intuitionistic fuzzy regular generalized closed set 

(IFRGCS in short) if cl(A) ⊆ U whenever A ⊆ U and 

U is an IFROS in X. 

Definition 2.7: [7] An IFS A in an IFTS (X, 𝜏) is 

intuitionistic fuzzy α generalized closed set (IFαGCS 

in short) if αcl(A) ⊆ U whenever A ⊆ U and U is an 

IFOS in X. 

Definition 2.8: [8] Two IFSs A and B are said to be 

q-coincident (A q B in short) if and only if there exist 

an element x ∊ X such that μA(x) > νB(x) or νA(x) < 
μB(x). 
Definition 2.9: [8] Two IFSs A and B are said to be 

not q-coincident (A q
c B in short) if and only if         

A ⊆ Bc. 

Definition 2.10:[4] An intuitionistic fuzzy point (IFP 

in short), written as p(α, β), is defined to be an IFS of X 

given by 

                                     p(α,β)(x) =

{
(α, β)             if  x = p,   
(0, 1)             otherwise.

 

An IFP p(α, β) is said to belong to a set A if α ≤ μA  

and β ≥ νA. 

 

INTUITIONISTIC FUZZY REGULAR α 

GENERALIZED 

CLOSED SETS 
In this section, we introduced intuitionistic fuzzy 

regular α generalized closed sets and studied some of 

their basic properties. 

Definition 3.1:  An IFS A of an IFTS (X, 𝜏) is called 

intuitionistic fuzzy regular α generalized closed set 

(IFRαGCS in short)  if αcl(A) ⊆ U whenever A ⊆ U 

and U is an IFROS in X. 

Example 3.2: Let X = {a,b} and let τ  = {0~,U,G,1~} 

where U = 〈x, (0.4,0.2), (0.6,0.7)〉
 

where μa=0.4, 

μb=0.2, νa=0.6, νb=0.7 and G = 〈x, (0.8,0.8), 

(0.2,0.2)〉 where μa=0.8, μb=0.8, νa=0.2, νb=0.2. Let A 

= 〈x, (0.2,0.2), (0.8,0.8)〉 be any IFS in (X,τ). Then A 

⊆ U where U is an IFROS in X. Now αcl(A) =        

〈x, (0.2,0.2), (0.8,0.8)〉 ⊆ U. Therefore A is an 

IFRαGCS in (X,τ). 

Theorem 3.3: Every IFCS in (X,τ) is an IFRαGCS in 

(X,τ) but not conversely. 

Proof: Let A ⊆ U and U be an IFROS in X. We have 

αcl(A) = A∪cl(int(cl(A))) = A∪cl(int(A)) ⊆ A∪cl(A) 

= A∪A = A, since by the hypothesis cl(A) = A. 

Therefore αcl(A) ⊆ U. Hence A is an IFRαGCS in 

(X,τ). 

Example 3.4: Let X = {a,b} and let τ = {0~,U,G,1~} 

where U = 〈x, (0.6,0.7), (0.4,0.2)〉 and G =               

〈x, (0.1,0.2), (0.9,0.8)〉. Let A = 〈x, (0.3,0.1), 

(0.6,0.7)〉 be any IFS in (X,τ). Then A ⊆ U where U 

is an IFROS in X. Now αcl(A) = 〈x, (0.4,0.2), 

(0.6,0.7)〉 ⊆ U . Therefore A is an IFRαGCS in X but 

not an IFCS in X, since cl(A) = 〈x, (0.4,0.2), 

(0.6,0.7)〉 ≠ A. 

Theorem 3.5: Every IFRCS in (X,τ) is an IFRαGCS 

in (X,τ) but not conversely.           

Proof: Let A ⊆ U and U be an IFROS in X. We have 

αcl(A) = A∪cl(int(cl(A))) = A∪cl(int(A)), since 

every IFRCS is an IFCS cl(A) = A, and by hypothesis 

A = cl(int(A)). Therefore αcl(A) = A∪A = A, and 

hence αcl(A) ⊆ U. Hence A is an IFRαGCS in (X,τ). 

Example 3.6: Let X = {a,b} and let τ = {0~,U,G,1~} 

where U = 〈x, (0.6,0.7), (0.3,0.2)〉 and G = 〈x, 

(0.2,0.2), (0.8,0.7)〉.  Let A = 〈x, (0.3,0.1), (0.7,0.7)〉 
be any IFS in (X,τ). Then A ⊆ U where U is an 

IFROS in X. Now αcl(A) = 〈x, (0.3,0.2), (0.6,0.7)〉⊆ 
U . Therefore A is an IFRαGCS in X but not an 

IFRCS in X, since cl(int(A)) = 0~ ≠ A. 

Theorem 3.7: Every IFαCS in (X,τ) is an IFRαGCS 

in (X,τ) but not conversely.          

Proof: Let A ⊆ U and U be an IFROS in X. We have 

αcl(A) = A∪cl(int(cl(A))) ⊆ A∪A = A, since by the 

hypothesis cl(int(cl(A))) ⊆ A. Therefore αcl(A) ⊆ U. 

Hence A is an IFRαGCS  in (X,τ). 

Example 3.8: Let X = {a,b} and let τ = {0~,U,G,1~} 

where U = 〈x, (0.6,0.7), (0.4,0.2)〉 and G =               

〈x, (0.1,0.2), (0.6,0.8)〉.  Let A = 〈x, (0.1,0.1), 

(0.6,0.7)〉 be any IFS in (X,τ). Then A ⊆ U where U 

is an IFROS in X. Now αcl(A) = 〈x, (0.4,0.2), 

(0.6,0.7)〉 ⊆ U. Therefore A is an IFRαGCS in X but 

not an IFαCS in X, since cl(int(cl(A))) =〈x, (0.4,0.2), 

(0.6,0.7)〉 ⊈ A. 

Remark 3.9: Every IFRαGCSs and every IFPCSs 

are independent to each other. 

Example  3.10: Let X = {a,b} and let τ = 

{0~,U,G,1~} where U = 〈x, (0.5,0.6), (0.4,0.2)〉 and    

G = 〈x, (0.3,0.2), (0.7,0.8)〉. Let A = 〈x, (0.3,0.2), 

(0.5,0.6)〉 be any IFS in (X,τ). Then A ⊆ U where U 

is an IFROS in X. Now αcl(A) = 〈x, (0.4,0.2), 

(0.5,0.6)〉 ⊆ U. Therefore A is an IFRαGCS in X, but 

not an IFPCS in X, since cl(int(A)) = 〈x, (0.4,0.2), 

(0.5,0.6)〉 ⊈ A. 

Example  3.11: Let X = {a,b} and let τ = 

{0~,U,G,1~} where U = 〈x, (0.2,0.3), (0.6,0.7)〉 and    
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G = 〈x, (0.8,0.7), (0.1,0)〉. Let A = 〈x, (0.1,0.2), 

(0.7,0.8)〉
 
be any IFS in (X,τ). Then cl(int(A)) =  0~ 

⊆ A. Therefore A is an IFPCS in X but not an 

IFRαGCS in X, since A ⊆ U where U is an IFROS in 

X but αcl(A) = 〈x, (0.6,0.7), (0.2,0.3)〉 ⊈  U. 

Remark 3.12: Every IFRαGCSs and every IFSCSs 

are independent to each other. 

Example  3.13: Let X = {a,b} and let τ = 

{0~,U,G,1~} where U = 〈x, (0.6,0.7), (0.4,0.2)〉 and  

G = 〈x, (0.1,0.2), (0.7,0.8)〉. Let A = 〈x, (0.2,0.1), 

(0.6,0.7)〉 be any IFS in (X,τ). Then A ⊆ U where U 

is an IFROS in X. Now αcl(A) = 〈x, (0.4,0.2), 

(0.6,0.7)〉 ⊆ U. Therefore A is an IFRαGCS in X but 

not an IFSCS in X, since int(cl(A)) = 〈x, (0.1,0.2), 

(0.7,0.8)〉 ⊈  A. 

Example  3.14: Let X = {a,b} and let τ = 

{0~,U,G,1~} where U = 〈x, (0.5,0.2), (0.5,0.8)〉 and  

G = 〈x, (0.2,0.2), (0.8,0.8)〉. Let A = 〈x, (0.5,0.2), 

(0.5,0.8)〉 be any IFS in (X,τ). Then int(cl(A)) = 〈x, 

(0.5,0.2), (0.5,0.8)〉 = A. Therefore A is an IFSCS in 

X but not an IFRαGCS   in X, since A = U where U 

is an IFROS in X, but αcl(A) = 〈x, (0.5,0.8), 

(0.5,0.2)〉 ⊈ U. 

Figure: 
         IFCS 

    

 
 

    IFRCS             IFαCS          IFPCS            IFRαGCS 

  

       IFSCS 

 

 

 

In this diagram by “ A             B ” we mean A implies B 

but not conversely and “ A                 B ” means A and B 

are independent of each other. 

Theorem 3.15: If an IFS A is both IFSCS and IFCS 

in (X,τ) then A is an IFRαGCS in (X,τ).    

Proof: Let A ⊆ U and U be an  IFROS in X. We 

have  αcl(A) = A∪cl(int(cl(A))) ⊆ A∪cl(A), since by 

the hypothesis int(cl(A)) ⊆ A. Also αcl(A) = A∪A, 

as cl(A) = A by the hypothesis. Therefore αcl(A) = A 

⊆ U. Hence A is an IFRαGCS in (X,τ). 

Theorem 3.16: If an IFS A is both IFPCS and IFCS 

in (X,τ) then A is an IFRαGCS in (X,τ).  

Proof: Let A ⊆ U and U be an IFROS in X. We have 

αcl(A) = A∪cl(int(cl(A))) = A∪cl(int(A)), since by 

the hypothesis cl(A) = A. Also αcl(A) ⊆ A∪A, as 

cl(int(A)) ⊆ A by the hypothesis, αcl(A) = A ⊆ U. 

Hence A is an IFRαGCS in (X,τ). 

Theorem 3.17: If an IFS A is both IFROS and IFCS 

in (X,τ) then A is an IFRαGCS in (X,τ).  

Proof: Let A ⊆ U and U be an IFROS in X. We have 

αcl(A) = A∪cl(int(cl(A))) = A∪cl(A), since by the 

hypothesis int(cl(A)) = A. Also αcl(A) = A∪A, as 

cl(A) = A by the hypothesis, αcl(A) = A ⊆ U. Hence 

A is an IFRαGCS in (X,τ). 

Theorem 3.18: If an IFS A is both IFSCS and 

IFGCS in (X,τ) then A is an IFRαGCS in (X,τ).  

Proof: Let A ⊆ U and U be an IFROS in X. Since 

every IFROS is an IFOS, U is an IFOS. We have 

αcl(A) = A∪cl(int(cl(A))) ⊆ A∪cl(A), since by the 

hypothesis int(cl(A)) ⊆ A. Also αcl(A) ⊆ cl(A), By 

the hypothesis cl(A) ⊆ U whenever A ⊆ U and U is 

an IFOS in X. Therefore αcl(A) ⊆ U. Hence A is an 

IFRαGCS in (X,τ). 

Remark 3.19: The union of two IFRαGCS in an 

IFTS (X,τ) need not be IFRαGCS in general.  

Example 3.20: Let X = {a,b} and let τ =               

{0~, U, G, H, I, J, K, 1~} is an IFT on (X,τ). Where  

U = 〈x, (0.6,0.7), (0.3,0.2)〉, G = 〈x, (0.4,0.2), 

(0.4,0.8)〉, H = 〈x, (0.2,0.2), (0.4,0.8)〉, I =               

〈x, (0.4,0.2), (0.4,0.7)〉, J = 〈x, (0.4,0.2), (0.6,0.8)〉 
and  K = 〈x, (0.2,0.2), (0.6,0.8)〉. Let A =                  

〈x, (0.6,0.7), (0.4,0.2)〉
 

and B = 〈x, (0.4,0.7), 

(0.3,0.2)〉 be any two IFS in (X,τ). Then A ⊆ U 

where U is an IFROS in X. αcl(A) = 〈x, (0.6,0.7), 

(0.4,0.2)〉 ⊆ U and then B ⊆ U where U is an IFROS 

in X. αcl(B) = 〈x, (0.4,0.7), (0.3,0.2)〉 ⊆ U. Therefore 

A and B are IFRαGCS in X but A∪B = 〈x, (0.6,0.7), 

(0.3,0.2)〉 is not an IFRαGCS in X, since A∪B ⊆ U 

but αcl(A∪B) = 〈x, (0.6,0.8), (0.2,0.2)〉 ⊈ U.  

Theorem 3.21: Let A be an IFRαGCS in an IFTS 

(X,τ) and A ⊆ B ⊆ αcl(A) then B is an IFRαGCS in 

(X,τ).      

    

Proof: Let B ⊆ U and U be an IFROS in X. Then A 

⊆ U,  since A ⊆ B. As A is an IFRαGCS in X, αcl(A) 

⊆ U. But by the hypothesis, B ⊆ αcl(A) ⟹ αcl(B) ⊆ 
αcl(A) ⊆ U. This implies αcl(B) ⊆ U. Hence B is an 

IFRαGCS in (X,τ).  

Theorem 3.22: Let (X,τ) be an intuitionistic fuzzy 

topological space and A be an IFαCS of  (X,τ). Then 

A is an IFRαGCS in (X,τ) if and only if A q
c F ⟹ 

αcl(A) q
c F for every IFRCS F of  (X,τ).  

Necessity: Let F be an IFRCS of X, and A q
c F. Then 

A ⊆ Fc, by definition and Fc is IFROS in X. Therefore 

αcl(A) ⊆ Fc because A is an IFRαGCS in X. Hence 

αcl(A) q
c F.   

 Sufficiency: Let U be an IFROS of X such that       

A ⊆ U. Then A q
c (Uc) and Uc is an IFRCS in X. 

Hence by hypothesis, αcl(A) q
c (Uc).Therefore αcl(A) 

⊆ (Uc)c = U. Hence A is an IFRαGCS in (X,τ). 

Theorem 3.23: If A is both an IFROS and IFRαGCS 

in (X,τ).Then A is an IFRGCS in (X,τ).  

Proof:  Let A ⊆ U and U be an IFROS in X. We 

have cl(A) = A∪cl(A), By hypothesis int(cl(A))=A as 

http://www.ijesrt.com/


[Nivetha, 4(2): February, 2015]   ISSN: 2277-9655 

   Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [237] 
 

A is an IFROS. This implies cl(A) = A∪cl(int(cl(A))) 

= αcl(A), By the hypothesis αcl(A) ⊆ U. This implies 

cl(A) ⊆ U. Hence A is an IFRGCS in (X,τ). 

Theorem 3.24: If A is both an IFPOS and IFRαGCS 

in (X,τ).Then A is an IFRGCS in (X,τ). 

Proof: Let A ⊆ U and U be an IFROS in X. We have 

cl(A) = A∪cl(A), By hypothesis A ⊆ int(cl(A)) as A 

is an IFPOS. This implies cl(A) ⊆ A∪cl(int(cl(A)))  

= αcl(A), By the hypothesis αcl(A) ⊆ U. This 

implies cl(A) ⊆ U. Hence A is an IFRGCS in (X,τ).  

Theorem 3.25: If A is an IFROS and an IFRαGCS in 

(X,τ). Then A is an IFαCS in (X,τ). 

Proof: As A ⊆ A, by the hypothesis, αcl(A) ⊆ A. But 

we have A ⊆ αcl(A). This implies αcl(A) = A. Hence 

A is an IFαCS in (X,τ). 

Theorem 3.26: Let (X,τ) be an IFTS. Then every IFS 

in (X,τ) is an IFRαGCS if and only if IFαO(X) =  

IFαC(X). 

Necessity: Suppose that every IFS in (X,τ) is an 

IFRαGCS. Let U ∊ IFRO(X), then U ∊ IFαO(X) and 

by the hypothesis, αcl(U) ⊆ U ⊆ αcl(U). This implies 

αcl(U) = U. Therefore U ∊ IFαC(X). Hence IFαO(X) 

⊆ IFαC(X). Let A ∊ IFαC(X), then Ac ∊ IFαO(X) ⊆ 

IFαC(X). That is, Ac ∊ IFαC(X). Therefore A ∊ 
IFαO(X). Hence IFαC(X) ⊆ IFαO(X). Thus IFαO(X) 

=  IFαC(X). 

Sufficiency: Suppose that IFαO(X) =  IFαC(X). Let 

A ⊆ U and U be an IFROS. Then U ∊ IFαO(X) and 

αcl(A) ⊆ αcl(U) = U, since U ∊ IFαC(X), by 

hypothesis. Therefore A is an IFRαGCS in (X,τ). 

Theorem 3.27: Let A be an IFRαGCS in (X,τ) and 

p(α, β) be an IFP in X such that int(p(α, β)) q αcl(A), 

then cl(int(p(α, β))) q A. 

Proof: Let A be an IFRαGCS and let int(p(α, β)) q 

αcl(A). If cl(int(p(α, β))) q
c
 A then by Definition 2.9,  A 

⊆ [cl(int(p(α, β)))]c  where [cl(int(p(α, β)))]c  is an 

IFROS. Then by hypothesis, αcl(A) ⊆[cl(int(p(α, β)))]c 

= int(cl(p(α, β))
c) ⊆ cl(p(α, β))

c = (int(p(α, β)))c. This 

implies αcl(A)  q
c  int(p(α, β)). Therefore by Definition 

2.9, int(p(α, β)) q
c
 αcl(A), which is a contradiction to 

the hypothesis. Hence cl(int(p(α, β))) q A. 

Theorem 3.28: Let F ⊆ A ⊆ X where A is an IFROS 

and an IFRαGCS in (X,τ). Then F is an IFRαGCS in 

A if and only if F is an IFRαGCS in (X,τ). 

Necessity:  Let U be an IFROS in X and F ⊆ U. Also 

let F be an IFRαGCS in A. Then clearly F ⊆ A ∩ U 

and A ∩ U is an IFROS in A. Hence the α closure of 

F in A, αclA(F) ⊆ A ∩ U. By Theorem 3.25, A is an 

IFαCS. Therefore αcl(A) = A and the α closure of  F 

in X, αcl(F) ⊆ αcl(F) ∩ αcl(A) = αcl(F) ∩ A = 

αclA(F) ⊆ A ∩ U ⊆ U. That is αcl(F) ⊆ U whenever 

F ⊆ U. Hence F is an IFRαGCS in A. 

Sufficiency: Let V be an IFROS in A such that         

F ⊆ V. Since A is an IFROS in X, V is an IFROS in 

X. Therefore αcl(F) ⊆ V, since F is an IFRαGCS in 

X. Thus αclA(F) = αcl(F) ∩ A   ⊆ V ∩ A ⊆ V. Hence  

F is an IFRαGCS in A. 
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