

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON INTUITIONISTIC FUZZY REGULAR α **GENERALIZED CLOSED SETS**

Nivetha M * , Assistant Professor Jayanthi D

* Department of Mathematics, Avinashilingam University, Coimbatore, Tamilnadu, India.

ABSTRACT

The purpose of this paper is to introduce and study the concept of intuitionistic fuzzy regular α generalized closed set in intuitionistic fuzzy topological space. We investigate some of their properties.

KEYWORDS: Intuitionistic fuzzy set, Intuitionistic fuzzy topology, Intuitionistic fuzzy topological space, Intuitionistic fuzzy regular α generalized closed set.

INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh [10] in 1965. Later, Chang [2] proposed fuzzy topology in 1967. After this, there have been several generalizations of notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets, introduced by Atanassov [1] is a generalization of fuzzy sets. In the last 25 years various concept of fuzzy mathematics have been extended for intuitionistic fuzzy sets. Using the notion of intuitionistic fuzzy sets, Coker [3] introduced the notion of intuitionistic fuzzy topological spaces in 1997. This approach provided a wide field for investigation in the area of intuitionistic fuzzy topology.

 In this paper, we introduce intuitionistic fuzzy regular α generalized closed set. We investigate some of their properties.

PRELIMINARIES

Definition 2.1:[1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } where the function $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $v_A(x)$) of each element $x \in$ X to the set A, respectively, and $0 \leq \mu_A(x) + \nu_A(x)$ ≤ 1 for each $x \in X$.

Definition 2.2: [1] Let A and B be two IFSs of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}$ and $B = \{ (x, \mu_B(x), \nu_B(x)) / x \in X \}.$ Then

- a) A \subseteq B if and only if $\mu_A(x) \leq \mu_B(x)$ and $v_A(x) \ge v_B(x)$ for all $x \in X$
- b) $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$
- c) $A^c = \{ (x, y_A(x), \mu_A(x)) / x \in X \}$
- d) A \cap B = { $\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \mu_B(x) \rangle$ $v_B(x)$ / $x \in X$ }
- e) A ∪ B = { $\langle x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \wedge \mu_B(x) \rangle$ $v_B(x)$ / $x \in X$ }

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \langle x, \mu_A(x), \nu_A(x) \rangle / x \in$ X}. The IFS $0 \sim$ = { $(x, 0, 1) / x \in X$ } and $1 \sim$ = $\{(x, 1, 0)/x \in X\}$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFS in X satisfying the following axioms:

- a) $0 \sim 1 \sim \epsilon \tau$,
- b) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- c) $\cup G_i \in \tau$ for any family $\{ G_i / i \in J \} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in (X, τ) is called an intuitionistic fuzzy closed (IFCS in short) in X.

Definition 2.4: [3] Let (X, τ) be an IFTS and $A = \langle x, \tau \rangle$ μ_A , ν_A) be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by $int(A) = \bigcup$ { G / G is an IFOS in X and G \subseteq A}

 $cl(A) = \bigcap \{K / K \text{ is an IFCS in } X \text{ and } A \subseteq K\}$

Note that for any IFS A in (X, τ) , we have $\text{cl}(A^c) = (\text{int}(A))^c$ and $\text{int}(A^c) = (\text{cl}(A))^c$.

Definition 2.5: [5] An IFS A in an IFTS (X, τ) is said to be an

- a) intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$,
- b) intuitionistic fuzzy α closed set (IF α CS in short) if $cl(int(cl(A))) \subseteq A$,

http: // www.ijesrt.com**©** *International Journal of Engineering Sciences & Research Technology*

c) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$.

Definition 2.6: [9] An IFS A in an IFTS (X, τ) is said to be an

a) intuitionistic fuzzy regular closed set (IFRCS in short) if $A = \text{cl(int}(A)),$

b) intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) ⊆ U$ whenever $A ⊆ U$ and U is an IFOS in X,

c) intuitionistic fuzzy regular generalized closed set (IFRGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFROS in X.

Definition 2.7: [7] An IFS A in an IFTS (X, τ) is intuitionistic fuzzy α generalized closed set (IF α GCS) in short) if $\alpha cI(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.

Definition 2.8: [8] Two IFSs A and B are said to be q-coincident (A_q B in short) if and only if there exist an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) <$ $\mu_B(x)$.

Definition 2.9: [8] Two IFSs A and B are said to be not q-coincident (A $_q^c$ B in short) if and only if $A \subseteq B^c$.

Definition 2.10:[4] An intuitionistic fuzzy point (IFP in short), written as $p_{(\alpha,\beta)}$, is defined to be an IFS of X given by

 $p_{(\alpha,\beta)}(x) =$ $\begin{cases} (\alpha, \beta) \\ (0, 1) \end{cases}$ if $x = p$,

otherwise.

An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \leq \mu_A$ and $β \ge v_A$.

INTUITIONISTIC FUZZY REGULAR α GENERALIZED CLOSED SETS

In this section, we introduced intuitionistic fuzzy

regular α generalized closed sets and studied some of their basic properties.

Definition 3.1: An IFS A of an IFTS (X, τ) is called intuitionistic fuzzy regular α generalized closed set (IFR α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFROS in X.

Example 3.2: Let $X = \{a,b\}$ and let $\tau = \{0, 0, 0, 1\}$ where $U = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$ where $\mu_a = 0.4$, $\mu_b=0.2$, $v_a=0.6$, $v_b=0.7$ and $G = \langle x, (0.8,0.8),$ (0.2,0.2)) where $\mu_a=0.8$, $\mu_b=0.8$, $\nu_a=0.2$, $\nu_b=0.2$. Let A $= \langle x, (0.2, 0.2), (0.8, 0.8) \rangle$ be any IFS in (X, τ) . Then A \subseteq U where U is an IFROS in X. Now $\alpha cI(A) =$ $\langle x, (0.2, 0.2), (0.8, 0.8) \rangle \subseteq U$. Therefore A is an IFRαGCS in (X,τ).

Theorem 3.3: Every IFCS in (X, τ) is an IFR α GCS in (X,τ) but not conversely.

Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(int(A)) \subseteq A \cup cl(A)$ $= A \cup A = A$, since by the hypothesis cl(A) = A. Therefore $\alpha cI(A) \subseteq U$. Hence A is an IFR αGCS in (X,τ) .

Example 3.4: Let $X = \{a,b\}$ and let $\tau = \{0, 0, 0, 1\}$ where $U = \langle x, (0.6, 0.7), (0.4, 0.2) \rangle$ and $G =$ $\langle x, (0.1,0.2), (0.9,0.8) \rangle$. Let $A = \langle x, (0.3,0.1), \rangle$ $(0.6,0.7)$ be any IFS in (X,τ) . Then A $\subseteq U$ where U is an IFROS in X. Now $\alpha cI(A) = \langle x, (0.4, 0.2),$ $(0.6, 0.7)$) $\subseteq U$. Therefore A is an IFR α GCS in X but not an IFCS in X, since $cl(A) = \langle x, (0.4, 0.2),$ $(0.6, 0.7)$ \neq A.

Theorem 3.5: Every IFRCS in (X, τ) is an IFR α GCS in (X,τ) but not conversely.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A)$ = A∪cl(int(cl(A))) = A∪cl(int(A)), since every IFRCS is an IFCS $cl(A) = A$, and by hypothesis $A = cl(int(A))$. Therefore $\alpha cl(A) = A \cup A = A$, and hence $\alpha cI(A) \subseteq U$. Hence A is an IFR αGCS in (X,τ) . **Example 3.6:** Let $X = \{a,b\}$ and let $\tau = \{0, 0, 0, 1\}$ where $U = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$ and $G = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$ $(0.2,0.2), (0.8,0.7)$. Let A = $\langle x, (0.3,0.1), (0.7,0.7) \rangle$ be any IFS in (X, τ) . Then $A \subseteq U$ where U is an IFROS in X. Now αcl(A) = $(x, (0.3, 0.2), (0.6, 0.7))$ ⊆ U . Therefore A is an IFRαGCS in X but not an IFRCS in X, since cl(int(A)) = $0 \sim \neq A$.

Theorem 3.7: Every IF α CS in (X,τ) is an IFR α GCS in (X,τ) but not conversely.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have α cl(A) = A∪cl(int(cl(A))) \subseteq A∪A = A, since by the hypothesis $cl(int(cl(A))) \subseteq A$. Therefore $acl(A) \subseteq U$. Hence A is an IFR α GCS in (X,τ) .

Example 3.8: Let $X = \{a,b\}$ and let $\tau = \{0, 0, 0, 1\}$ where $U = \langle x, (0.6, 0.7), (0.4, 0.2) \rangle$ and $G =$ $\langle x, (0.1, 0.2), (0.6, 0.8) \rangle$. Let $A = \langle x, (0.1, 0.1), \rangle$ $(0.6,0.7)$ be any IFS in (X,τ) . Then A $\subseteq U$ where U is an IFROS in X. Now $\alpha cI(A) = \langle x, (0.4, 0.2),$ $(0.6, 0.7)$) \subseteq U. Therefore A is an IFR α GCS in X but not an IF α CS in X, since cl(int(cl(A))) = $(x, (0.4, 0.2),$ $(0.6, 0.7)$ \nsubseteq A.

Remark 3.9: Every IFRαGCSs and every IFPCSs are independent to each other.

Example 3.10: Let $X = \{a,b\}$ and let $\tau =$ ${0, U, G, 1-\}$ where $U = \langle x, (0.5, 0.6), (0.4, 0.2) \rangle$ and $G = \langle x, (0.3, 0.2), (0.7, 0.8) \rangle$. Let $A = \langle x, (0.3, 0.2), \rangle$ $(0.5,0.6)$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cI(A) = \langle x, (0.4, 0.2),$ $(0.5,0.6)$) \subseteq U. Therefore A is an IFR α GCS in X, but not an IFPCS in X, since $cl(int(A)) = \langle x, (0.4, 0.2),$ $(0.5,0.6)$ \notin A.

Example 3.11: Let $X = \{a,b\}$ and let $\tau =$ ${0, U, G, 1-\}$ where $U = \langle x, (0.2, 0.3), (0.6, 0.7) \rangle$ and

http: // www.ijesrt.com**©** *International Journal of Engineering Sciences & Research Technology*

G = $\langle x, (0.8,0.7), (0.1,0) \rangle$. Let A = $\langle x, (0.1,0.2),$ $(0.7,0.8)$ be any IFS in (X,τ) . Then $cl(int(A)) = 0$ ~ \subseteq A. Therefore A is an IFPCS in X but not an IFRαGCS in X, since A ⊆ U where U is an IFROS in X but $\alpha c l(A) = \langle x, (0.6, 0.7), (0.2, 0.3) \rangle \nsubseteq U$.

Remark 3.12: Every IFRαGCSs and every IFSCSs are independent to each other.

Example 3.13: Let $X = \{a,b\}$ and let $\tau =$ ${0, U, G, 1-\}$ where $U = \langle x, (0.6, 0.7), (0.4, 0.2) \rangle$ and $G = \langle x, (0.1, 0.2), (0.7, 0.8) \rangle$. Let $A = \langle x, (0.2, 0.1),$ $(0.6,0.7)$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cI(A) = \langle x, (0.4, 0.2),$ $(0.6, 0.7)$) $\subseteq U$. Therefore A is an IFR α GCS in X but not an IFSCS in X, since $int(cI(A)) = \langle x, (0.1, 0.2),$ $(0.7, 0.8)$ \notin A.

Example 3.14: Let $X = \{a,b\}$ and let $\tau =$ ${0-,U,G,1-\}$ where $U = \langle x, (0.5,0.2), (0.5,0.8) \rangle$ and G = $(x, (0.2, 0.2), (0.8, 0.8))$. Let $A = (x, (0.5, 0.2),$ $(0.5,0.8)$ be any IFS in (X,τ) . Then int(cl(A)) = $\langle x, \tau \rangle$ $(0.5, 0.2), (0.5, 0.8)$ = A. Therefore A is an IFSCS in X but not an IFR α GCS in X, since A = U where U is an IFROS in X, but $\alpha c l(A) = \langle x, (0.5, 0.8),$ $(0.5, 0.2)$ $\notin U$.

Figure:

In this diagram by " $A \rightarrow B$ " we mean A implies B *but not conversely and* $A \rightarrow B$ *" means A and B are independent of each other.*

Theorem 3.15: If an IFS A is both IFSCS and IFCS in $(X,τ)$ then A is an IFRαGCS in $(X,τ)$.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha c l(A) = A \cup c l(int(c l(A))) \subseteq A \cup c l(A)$, since by the hypothesis int(cl(A)) \subseteq A. Also α cl(A) = AUA, as $cl(A) = A$ by the hypothesis. Therefore $\alpha cl(A) = A$ \subseteq U. Hence A is an IFRαGCS in (X,τ) .

Theorem 3.16: If an IFS A is both IFPCS and IFCS in $(X,τ)$ then A is an IFRαGCS in $(X,τ)$.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(int(A)),$ since by the hypothesis $cl(A) = A$. Also $\alpha cl(A) \subseteq A \cup A$, as $cl(int(A)) \subseteq A$ by the hypothesis, $acl(A) = A \subseteq U$. Hence A is an IFR α GCS in (X, τ) .

Theorem 3.17: If an IFS A is both IFROS and IFCS in $(X,τ)$ then A is an IFRαGCS in $(X,τ)$.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(A)$, since by the

hypothesis int(cl(A)) = A. Also α cl(A) = A∪A, as $cl(A) = A$ by the hypothesis, $\alpha cl(A) = A \subseteq U$. Hence A is an IFR α GCS in (X,τ) .

Theorem 3.18: If an IFS A is both IFSCS and IFGCS in (X,τ) then A is an IFRαGCS in (X,τ).

Proof: Let $A \subseteq U$ and U be an IFROS in X. Since every IFROS is an IFOS, U is an IFOS. We have α cl(A) = A∪cl(int(cl(A))) \subseteq A∪cl(A), since by the hypothesis int(cl(A)) \subseteq A. Also α cl(A) \subseteq cl(A), By the hypothesis $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X. Therefore $\alpha cI(A) \subseteq U$. Hence A is an IFRαGCS in (X,τ).

Remark 3.19: The union of two IFRαGCS in an IFTS (X,τ) need not be IFRαGCS in general.

Example 3.20: Let $X = \{a,b\}$ and let $\tau =$ ${0, 0, G, H, I, J, K, 1-\}$ is an IFT on (X, τ) . Where $U = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle, G = \langle x, (0.4, 0.2),$ $(0.4, 0.8)$, H = $(x, (0.2, 0.2), (0.4, 0.8))$, I = $\langle x, (0.4, 0.2), (0.4, 0.7) \rangle$, $J = \langle x, (0.4, 0.2), (0.6, 0.8) \rangle$ and $K = \langle x, (0.2, 0.2), (0.6, 0.8) \rangle$. Let $A =$ $\langle x, (0.6, 0.7), (0.4, 0.2) \rangle$ and $B = \langle x, (0.4, 0.7),$ (0.3,0.2)) be any two IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. α cl(A) = $\langle x, (0.6, 0.7),$ $(0.4, 0.2)$) \subseteq U and then B \subseteq U where U is an IFROS in X. $\alpha cI(B) = \langle x, (0.4, 0.7), (0.3, 0.2) \rangle \subseteq U$. Therefore A and B are IFR α GCS in X but A∪B = $(x, (0.6, 0.7))$, $(0.3,0.2)$ is not an IFRαGCS in X, since AUB $\subseteq U$ but αcl(A∪B) = 〈x, (0.6,0.8), (0.2,0.2)〉 ⊈ U.

Theorem 3.21: Let A be an IFRαGCS in an IFTS (X,τ) and $A \subseteq B \subseteq \alpha cl(A)$ then B is an IFR α GCS in (X,τ) .

Proof: Let $B \subseteq U$ and U be an IFROS in X. Then A \subseteq U, since A \subseteq B. As A is an IFR α GCS in X, α cl(A) \subseteq U. But by the hypothesis, $B \subseteq \alpha cl(A) \implies \alpha cl(B) \subseteq$ α cl(A) \subseteq U. This implies α cl(B) \subseteq U. Hence B is an IFRαGCS in (X,τ).

Theorem 3.22: Let (X, τ) be an intuitionistic fuzzy topological space and A be an IF α CS of (X, τ) . Then A is an IFR α GCS in (X,τ) if and only if A $_q^{\circ}$ F \Rightarrow α cl(A) $_q$ ^c F for every IFRCS F of (X, τ).

Necessity: Let F be an IFRCS of X, and A_q^c F. Then $A \subseteq F^c$, by definition and F^c is IFROS in X. Therefore α cl(A) \subseteq F^c because A is an IFR α GCS in X. Hence α cl(A) $_q$ ^c F.

Sufficiency: Let U be an IFROS of X such that $A \subseteq U$. Then $A_q^c(U^c)$ and U^c is an IFRCS in X. Hence by hypothesis, $\alpha cl(A) \int_{q}^{c} (U^c)$. Therefore $\alpha cl(A)$ \subseteq (U^c)^c = U. Hence A is an IFRαGCS in (X, τ).

Theorem 3.23: If A is both an IFROS and IFRαGCS in (X,τ) . Then A is an IFRGCS in (X,τ) .

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $cl(A) = A \cup cl(A)$, By hypothesis int($cl(A)$)=A as

http: // www.ijesrt.com**©** *International Journal of Engineering Sciences & Research Technology*

A is an IFROS. This implies $cl(A) = A \cup cl(int(cl(A)))$ $= \alpha cI(A)$, By the hypothesis $\alpha cI(A) \subseteq U$. This implies $cl(A) \subseteq U$. Hence A is an IFRGCS in (X, τ) .

Theorem 3.24: If A is both an IFPOS and IFRαGCS in (X,τ) . Then A is an IFRGCS in (X,τ) .

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $cl(A) = A \cup cl(A)$, By hypothesis $A \subseteq int(cl(A))$ as A is an IFPOS. This implies $cl(A) \subseteq A \cup cl(int(cl(A)))$ $= \alpha c l(A)$, By the hypothesis $\alpha c l(A) \subseteq U$. This implies $cl(A) \subseteq U$. Hence A is an IFRGCS in (X, τ) .

Theorem 3.25: If A is an IFROS and an IFRαGCS in (X,τ). Then A is an IFαCS in $(X,τ)$.

Proof: As $A \subseteq A$, by the hypothesis, $\alpha cI(A) \subseteq A$. But we have $A \subseteq \alpha cl(A)$. This implies $\alpha cl(A) = A$. Hence A is an IF α CS in (X,τ) .

Theorem 3.26: Let (X, τ) be an IFTS. Then every IFS in (X,τ) is an IFRαGCS if and only if IFαO(X) = IFα $C(X)$.

Necessity: Suppose that every IFS in (X,τ) is an IFR α GCS. Let U \in IFRO(X), then U \in IF α O(X) and by the hypothesis, $\alpha cl(U) \subseteq U \subseteq \alpha cl(U)$. This implies α cl(U) = U. Therefore U \in IF α C(X). Hence IF α O(X) \subseteq IF α C(X). Let A \in IF α C(X), then A^c \in IF α O(X) \subseteq IF α C(X). That is, A^c \in IF α C(X). Therefore A \in IFαO(X). Hence IFαC(X) ⊆ IFαO(X). Thus IFαO(X) $=$ IF α C(X).

Sufficiency: Suppose that $IFαO(X) = IFαC(X)$. Let $A \subseteq U$ and U be an IFROS. Then $U \in \text{IFaO}(X)$ and $\alpha cl(A) \subseteq \alpha cl(U) = U$, since $U \in IF\alpha C(X)$, by hypothesis. Therefore A is an IFR α GCS in (X, τ) .

Theorem 3.27: Let A be an IFR α GCS in (X,τ) and p(α, β) be an IFP in X such that $int(p_{(α, β)})$ q αcl(A), then cl(int($p_{(\alpha, \beta)}$)) _q A.

Proof: Let A be an IFR α GCS and let $int(p_{(\alpha, \beta)})_q$ α cl(A). If cl(int($p_{(\alpha,\beta)}$)) _q^c A then by Definition 2.9, A \subseteq [cl(int(p_(α, β)))]^c where [cl(int(p_(α, β))]^c is an IFROS. Then by hypothesis, $\alpha cl(A) \subseteq [cl(int(p_{(α, β)}))]^c$ = int(cl(p_(α, β))^c) \subseteq cl(p_(α, β))^c = (int(p_(α, β)))^c. This implies $\alpha c l(A) \int_{\alpha}^{c} int(p_{(\alpha, \beta)})$. Therefore by Definition 2.9, int($p_{(\alpha, \beta)}$) q^c α cl(A), which is a contradiction to the hypothesis. Hence cl(int($p_{(\alpha,\beta)}$)) q A.

Theorem 3.28: Let $F \subseteq A \subseteq X$ where A is an IFROS and an IFR α GCS in (X, τ) . Then F is an IFR α GCS in A if and only if F is an IFR α GCS in (X,τ) .

Necessity: Let U be an IFROS in X and $F \subseteq U$. Also let F be an IFR α GCS in A. Then clearly $F \subseteq A \cap U$ and A \cap U is an IFROS in A. Hence the α closure of F in A, $\alpha cl_A(F) \subseteq A \cap U$. By Theorem 3.25, A is an IFαCS. Therefore αcl(A) = A and the α closure of F in X, $\alpha c l(F) \subseteq \alpha c l(F) \cap \alpha c l(A) = \alpha c l(F) \cap A$ $\alpha cl_A(F) \subseteq A \cap U \subseteq U$. That is $\alpha cl_F \subseteq U$ whenever $F \subseteq U$. Hence F is an IFR α GCS in A.

Sufficiency: Let V be an IFROS in A such that $F \subseteq V$. Since A is an IFROS in X, V is an IFROS in X. Therefore $\alpha cl(F) \subseteq V$, since F is an IFR αGCS in X. Thus $\alpha cl_A(F) = \alpha cl(F) \cap A \subseteq V \cap A \subseteq V$. Hence F is an IFR α GCS in A.

REFERENCES

- 1. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and system, 1986, 87-96.
- 2. Chang, C.L., "Fuzzy Topological Spaces ", J.Math. Anal. Appl. 24 182-190, (1968).
- 3. Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems,1997,81-89.
- 4. Coker, D., and Demirci, M., On intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets 1(1995), 79-84.
- 5. Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. Of Fuzzy Math., 5(1997), 365-378.
- 6. Joung kon Jeon, Young Bae Jun and Jin Han Park., Intuitionistic fuzzy alpha continuity and Intuitionistic fuzzy pre continuity, international Journal of Mathematics and Mathematical Sciences, 19(2005),3091-3101.
- 7. Santhi, R., and Sakthivel,K.,Intuitionistic fuzzy almost alpha generalized continuous mapping, Advances in Fuzzy Mathematics, 2(2010),209-219.
- 8. Thakur, S. S., and Rekha Chaturvedi., Regular gerenalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria; Mathematica, 16(2006), 257-272,
- 9. Thakur, S. S., and Singh, S., On Fuzzy Semi-pre open sets and fuzzy semi pre continuity, Fuzzy sets and systems, 1998, 383-391.
- 10. Zadeh, L.H., Fuzzy Sets, Information and Control, 18, 338-353, (1965).

http: // www.ijesrt.com**©** *International Journal of Engineering Sciences & Research Technology*