

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON INTUITIONISTIC FUZZY REGULAR α GENERALIZED CLOSED SETS

Nivetha M^{*}, Assistant Professor Jayanthi D

* Department of Mathematics, Avinashilingam University, Coimbatore, Tamilnadu, India.

ABSTRACT

The purpose of this paper is to introduce and study the concept of intuitionistic fuzzy regular α generalized closed set in intuitionistic fuzzy topological space. We investigate some of their properties.

KEYWORDS: Intuitionistic fuzzy set, Intuitionistic fuzzy topology, Intuitionistic fuzzy topological space, Intuitionistic fuzzy regular α generalized closed set.

INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh [10] in 1965. Later, Chang [2] proposed fuzzy topology in 1967. After this, there have been several generalizations of notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets, introduced by Atanassov [1] is a generalization of fuzzy sets. In the last 25 years various concept of fuzzy mathematics have been extended for intuitionistic fuzzy sets, Coker [3] introduced the notion of intuitionistic fuzzy sets in 1997. This approach provided a wide field for investigation in the area of intuitionistic fuzzy topology.

In this paper, we introduce intuitionistic fuzzy regular α generalized closed set. We investigate some of their properties.

PRELIMINARIES

Definition 2.1:[1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ where the function $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2: [1] Let A and B be two IFSs of the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X$ }. Then

- a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- c) $A^c = \{\langle x, v_A(x), \mu_A(x) \rangle / x \in X\}$

- d) A \cap B = {(x, $\mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x))/x \in X$ }
- e) A U B = {(x, $\mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x))/x \in X}$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. The IFS $0 \sim = \{\langle x, 0, 1 \rangle / x \in X \}$ and $1 \sim = \{\langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFS in X satisfying the following axioms:

- a) $0 \sim , 1 \sim \in \tau$,
- b) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- c) $\cup G_i \in \tau$ for any family $\{G_i | i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in (X, τ) is called an intuitionistic fuzzy closed (IFCS in short) in X.

Definition 2.4: [3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by int $(A) = \bigcup \{G \mid G \text{ is an IFOS in X and } G \subseteq A\}$

 $cl(A) = \cap \{K / K \text{ is an IFCS in } X \text{ and } A \subseteq K\}$

Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Definition 2.5: [5] An IFS A in an IFTS (X, τ) is said to be an

- a) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A,
- b) intuitionistic fuzzy α closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A,

http://www.ijesrt.com@ International Journal of Engineering Sciences & Research Technology

c) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$.

Definition 2.6: [9] An IFS A in an IFTS (X, τ) is said to be an

a) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)),

b) intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X,

c) intuitionistic fuzzy regular generalized closed set (IFRGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFROS in X.

Definition 2.7: [7] An IFS A in an IFTS (X, τ) is intuitionistic fuzzy α generalized closed set (IF α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X.

Definition 2.8: [8] Two IFSs A and B are said to be q-coincident (A q B in short) if and only if there exist an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.9: [8] Two IFSs A and B are said to be not q-coincident (A $_q^c$ B in short) if and only if $A \subseteq B^c$.

Definition 2.10:[4] An intuitionistic fuzzy point (IFP in short), written as $p_{(\alpha, \beta)}$, is defined to be an IFS of X given by

 $p_{(\alpha,\beta)}(x) =$

 $\{(\alpha, \beta) \quad \text{if } x = p, \\ (\alpha, \beta) \quad \text{if } x$

l(0,1) otherwise.

An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \leq \mu_A$ and $\beta \geq \nu_A$.

INTUITIONISTIC FUZZY REGULAR α GENERALIZED CLOSED SETS

CLOSED SETS

In this section, we introduced intuitionistic fuzzy regular α generalized closed sets and studied some of their basic properties.

Definition 3.1: An IFS A of an IFTS (X, τ) is called intuitionistic fuzzy regular α generalized closed set (IFR α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFROS in X.

Example 3.2: Let $X = \{a,b\}$ and let $\tau = \{0, U, G, 1, \}$ where $U = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$ where $\mu_a = 0.4$, $\mu_b = 0.2$, $\nu_a = 0.6$, $\nu_b = 0.7$ and $G = \langle x, (0.8, 0.8), (0.2, 0.2) \rangle$ where $\mu_a = 0.8$, $\mu_b = 0.8$, $\nu_a = 0.2$, $\nu_b = 0.2$. Let $A = \langle x, (0.2, 0.2), (0.8, 0.8) \rangle$ be any IFS in (X, τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cl(A) = \langle x, (0.2, 0.2), (0.8, 0.8) \rangle \subseteq U$. Therefore A is an IFR α GCS in (X, τ) .

Theorem 3.3: Every IFCS in (X,τ) is an IFR α GCS in (X,τ) but not conversely.

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(int(A)) \subseteq A \cup cl(A) = A \cup A = A$, since by the hypothesis cl(A) = A. Therefore $\alpha cl(A) \subseteq U$. Hence A is an IFR α GCS in (X, τ) .

Example 3.4: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U,G,1\sim\}$ where $U = \langle x, (0.6,0.7), (0.4,0.2) \rangle$ and $G = \langle x, (0.1,0.2), (0.9,0.8) \rangle$. Let $A = \langle x, (0.3,0.1), (0.6,0.7) \rangle$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cl(A) = \langle x, (0.4,0.2), (0.6,0.7) \rangle \subseteq U$. Therefore A is an IFR α GCS in X but not an IFCS in X, since $cl(A) = \langle x, (0.4,0.2), (0.6,0.7) \rangle \neq A$.

Theorem 3.5: Every IFRCS in (X,τ) is an IFR α GCS in (X,τ) but not conversely.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(int(A))$, since every IFRCS is an IFCS cl(A) = A, and by hypothesis A = cl(int(A)). Therefore $\alpha cl(A) = A \cup A = A$, and hence $\alpha cl(A) \subseteq U$. Hence A is an IFR α GCS in (X,τ) . **Example 3.6:** Let $X = \{a,b\}$ and let $\tau = \{0\sim, U,G,1\sim\}$ where $U = \langle x, (0.6,0.7), (0.3,0.2) \rangle$ and $G = \langle x, (0.2,0.2), (0.8,0.7) \rangle$. Let $A = \langle x, (0.3,0.1), (0.7,0.7) \rangle$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cl(A) = \langle x, (0.3,0.2), (0.6,0.7) \rangle \subseteq U$. Therefore A is an IFR α GCS in X but not an IFRCS in X, since $cl(int(A)) = 0 \sim \neq A$.

Theorem 3.7: Every IF α CS in (X, τ) is an IFR α GCS in (X, τ) but not conversely.

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) \subseteq A \cup A = A$, since by the hypothesis $cl(int(cl(A))) \subseteq A$. Therefore $\alpha cl(A) \subseteq U$. Hence A is an IFR α GCS in (X,τ) .

Example 3.8: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U,G,1\sim\}$ where $U = \langle x, (0.6,0.7), (0.4,0.2) \rangle$ and $G = \langle x, (0.1,0.2), (0.6,0.8) \rangle$. Let $A = \langle x, (0.1,0.1), (0.6,0.7) \rangle$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cl(A) = \langle x, (0.4,0.2), (0.6,0.7) \rangle \subseteq U$. Therefore A is an IFR α GCS in X but not an IF α CS in X, since $cl(int(cl(A))) = \langle x, (0.4,0.2), (0.6,0.7) \rangle \nsubseteq A$.

Remark 3.9: Every IFR α GCSs and every IFPCSs are independent to each other.

Example 3.10: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U,G,1\sim\}$ where $U = \langle x, (0.5,0.6), (0.4,0.2) \rangle$ and $G = \langle x, (0.3,0.2), (0.7,0.8) \rangle$. Let $A = \langle x, (0.3,0.2), (0.5,0.6) \rangle$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cl(A) = \langle x, (0.4,0.2), (0.5,0.6) \rangle \subseteq U$. Therefore A is an IFR α GCS in X, but not an IFPCS in X, since $cl(int(A)) = \langle x, (0.4,0.2), (0.5,0.6) \rangle \nsubseteq A$.

Example 3.11: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U, G, 1\sim\}$ where $U = \langle x, (0.2, 0.3), (0.6, 0.7) \rangle$ and

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

G = $\langle x, (0.8,0.7), (0.1,0) \rangle$. Let A = $\langle x, (0.1,0.2), (0.7,0.8) \rangle$ be any IFS in (X, τ). Then cl(int(A)) = 0~ ⊆ A. Therefore A is an IFPCS in X but not an IFR α GCS in X, since A ⊆ U where U is an IFROS in X but α cl(A) = $\langle x, (0.6,0.7), (0.2,0.3) \rangle \not\subseteq$ U.

Remark 3.12: Every IFR α GCSs and every IFSCSs are independent to each other.

Example 3.13: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U,G,1\sim\}$ where $U = \langle x, (0.6,0.7), (0.4,0.2) \rangle$ and $G = \langle x, (0.1,0.2), (0.7,0.8) \rangle$. Let $A = \langle x, (0.2,0.1), (0.6,0.7) \rangle$ be any IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. Now $\alpha cl(A) = \langle x, (0.4,0.2), (0.6,0.7) \rangle \subseteq U$. Therefore A is an IFR α GCS in X but not an IFSCS in X, since int $(cl(A)) = \langle x, (0.1,0.2), (0.7,0.8) \rangle \nsubseteq A$.

Example 3.14: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U,G,1\sim\}$ where $U = \langle x, (0.5,0.2), (0.5,0.8) \rangle$ and $G = \langle x, (0.2,0.2), (0.8,0.8) \rangle$. Let $A = \langle x, (0.5,0.2), (0.5,0.8) \rangle$ be any IFS in (X,τ) . Then int $(cl(A)) = \langle x, (0.5,0.2), (0.5,0.8) \rangle = A$. Therefore A is an IFSCS in X but not an IFR α GCS in X, since A = U where U is an IFROS in X, but $\alpha cl(A) = \langle x, (0.5,0.8), (0.5,0.2) \rangle \nsubseteq U$.

Figure:

In this diagram by " $A \longrightarrow B$ " we mean A implies B but not conversely and " $A \longrightarrow B$ " means A and B are independent of each other.

Theorem 3.15: If an IFS A is both IFSCS and IFCS in (X,τ) then A is an IFR α GCS in (X,τ) .

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) \subseteq A \cup cl(A)$, since by the hypothesis int(cl(A)) $\subseteq A$. Also $\alpha cl(A) = A \cup A$, as cl(A) = A by the hypothesis. Therefore $\alpha cl(A) = A \subseteq U$. Hence A is an IFR α GCS in (X,τ) .

Theorem 3.16: If an IFS A is both IFPCS and IFCS in (X,τ) then A is an IFR α GCS in (X,τ) .

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(int(A))$, since by the hypothesis cl(A) = A. Also $\alpha cl(A) \subseteq A \cup A$, as $cl(int(A)) \subseteq A$ by the hypothesis, $\alpha cl(A) = A \subseteq U$. Hence A is an IFR α GCS in (X, τ) .

Theorem 3.17: If an IFS A is both IFROS and IFCS in (X,τ) then A is an IFR α GCS in (X,τ) .

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $\alpha cl(A) = A \cup cl(int(cl(A))) = A \cup cl(A)$, since by the

hypothesis int(cl(A)) = A. Also $\alpha cl(A) = A \cup A$, as cl(A) = A by the hypothesis, $\alpha cl(A) = A \subseteq U$. Hence A is an IFR α GCS in (X, τ).

Theorem 3.18: If an IFS A is both IFSCS and IFGCS in (X,τ) then A is an IFR α GCS in (X,τ) .

Proof: Let $A \subseteq U$ and U be an IFROS in X. Since every IFROS is an IFOS, U is an IFOS. We have $\alpha cl(A) = A \cup cl(int(cl(A))) \subseteq A \cup cl(A)$, since by the hypothesis $int(cl(A)) \subseteq A$. Also $\alpha cl(A) \subseteq cl(A)$, By the hypothesis $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X. Therefore $\alpha cl(A) \subseteq U$. Hence A is an IFR α GCS in (X, τ) .

Remark 3.19: The union of two IFR α GCS in an IFTS (X, τ) need not be IFR α GCS in general.

Example 3.20: Let $X = \{a,b\}$ and let $\tau = \{0\sim, U, G, H, I, J, K, 1\sim\}$ is an IFT on (X,τ) . Where $U = \langle x, (0.6,0.7), (0.3,0.2) \rangle$, $G = \langle x, (0.4,0.2), (0.4,0.8) \rangle$, $H = \langle x, (0.2,0.2), (0.4,0.8) \rangle$, $I = \langle x, (0.4,0.2), (0.4,0.7) \rangle$, $J = \langle x, (0.4,0.2), (0.6,0.8) \rangle$ and $K = \langle x, (0.2,0.2), (0.6,0.8) \rangle$. Let $A = \langle x, (0.6,0.7), (0.4,0.2) \rangle$ and $B = \langle x, (0.4,0.7), (0.3,0.2) \rangle$ be any two IFS in (X,τ) . Then $A \subseteq U$ where U is an IFROS in X. $\alpha cl(A) = \langle x, (0.6,0.7), (0.4,0.7), (0.3,0.2) \rangle \subseteq U$ and then $B \subseteq U$ where U is an IFROS in X. $\alpha cl(A) = \langle x, (0.6,0.7), (0.4,0.2), (0.3,0.2) \rangle \subseteq U$. Therefore A and B are IFR α GCS in X but $A \cup B = \langle x, (0.6,0.7), (0.3,0.2) \rangle$ is not an IFR α GCS in X, since $A \cup B \subseteq U$ but $\alpha cl(A \cup B) = \langle x, (0.6,0.8), (0.2,0.2) \rangle \nsubseteq U$.

Theorem 3.21: Let A be an IFR α GCS in an IFTS (X,τ) and $A \subseteq B \subseteq \alpha cl(A)$ then B is an IFR α GCS in (X,τ) .

Proof: Let $B \subseteq U$ and U be an IFROS in X. Then $A \subseteq U$, since $A \subseteq B$. As A is an IFR α GCS in X, α cl(A) $\subseteq U$. But by the hypothesis, $B \subseteq \alpha$ cl(A) $\Rightarrow \alpha$ cl(B) $\subseteq \alpha$ cl(A) $\subseteq U$. This implies α cl(B) $\subseteq U$. Hence B is an IFR α GCS in (X, τ).

Theorem 3.22: Let (X,τ) be an intuitionistic fuzzy topological space and A be an IF α CS of (X,τ) . Then A is an IFR α GCS in (X,τ) if and only if A $_q^c F \Rightarrow \alpha cl(A)_q^c F$ for every IFRCS F of (X,τ) .

Necessity: Let F be an IFRCS of X, and A $_q^c F$. Then $A \subseteq F^c$, by definition and F^c is IFROS in X. Therefore $\alpha cl(A) \subseteq F^c$ because A is an IFR α GCS in X. Hence $\alpha cl(A)_q^c F$.

Sufficiency: Let U be an IFROS of X such that $A \subseteq U$. Then $A_q^c(U^c)$ and U^c is an IFRCS in X. Hence by hypothesis, $\alpha cl(A)_q^c(U^c)$. Therefore $\alpha cl(A) \subseteq (U^c)^c = U$. Hence A is an IFR α GCS in (X, τ).

Theorem 3.23: If A is both an IFROS and IFR α GCS in (X, τ). Then A is an IFRGCS in (X, τ).

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $cl(A) = A \cup cl(A)$, By hypothesis int(cl(A))=A as

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

A is an IFROS. This implies $cl(A) = A \cup cl(int(cl(A)))$ = $\alpha cl(A)$, By the hypothesis $\alpha cl(A) \subseteq U$. This implies $cl(A) \subseteq U$. Hence A is an IFRGCS in (X,τ) .

Theorem 3.24: If A is both an IFPOS and IFR α GCS in (X, τ). Then A is an IFRGCS in (X, τ).

Proof: Let $A \subseteq U$ and U be an IFROS in X. We have $cl(A) = A \cup cl(A)$, By hypothesis $A \subseteq int(cl(A))$ as A is an IFPOS. This implies $cl(A) \subseteq A \cup cl(int(cl(A)))$ = $\alpha cl(A)$, By the hypothesis $\alpha cl(A) \subseteq U$. This implies $cl(A) \subseteq U$. Hence A is an IFRGCS in (X, τ) .

Theorem 3.25: If A is an IFROS and an IFR α GCS in (X, τ). Then A is an IF α CS in (X, τ).

Proof: As $A \subseteq A$, by the hypothesis, $\alpha cl(A) \subseteq A$. But we have $A \subseteq \alpha cl(A)$. This implies $\alpha cl(A) = A$. Hence A is an IF α CS in (X, τ).

Theorem 3.26: Let (X,τ) be an IFTS. Then every IFS in (X,τ) is an IFR α GCS if and only if IF α O $(X) = IF\alpha$ C(X).

Necessity: Suppose that every IFS in (X,τ) is an IFR α GCS. Let $U \in$ IFRO(X), then $U \in$ IF α O(X) and by the hypothesis, α cl(U) $\subseteq U \subseteq \alpha$ cl(U). This implies α cl(U) = U. Therefore $U \in$ IF α C(X). Hence IF α O(X) \subseteq IF α C(X). Let $A \in$ IF α C(X), then $A^c \in$ IF α O(X) \subseteq IF α C(X). That is, $A^c \in$ IF α C(X). Therefore $A \in$ IF α O(X). Hence IF α C(X) \subseteq IF α O(X). Hence IF α C(X) \subseteq IF α O(X). Thus IF α O(X) = IF α C(X).

Sufficiency: Suppose that $IF\alpha O(X) = IF\alpha C(X)$. Let $A \subseteq U$ and U be an IFROS. Then $U \in IF\alpha O(X)$ and $\alpha cl(A) \subseteq \alpha cl(U) = U$, since $U \in IF\alpha C(X)$, by hypothesis. Therefore A is an IFR α GCS in (X,τ) .

Theorem 3.27: Let A be an IFR α GCS in (X, τ) and p(α , β) be an IFP in X such that int(p_(α , β)) $_{q} \alpha$ cl(A), then cl(int(p_(α , β))) $_{q}$ A.

Proof: Let A be an IFR α GCS and let $int(p_{(\alpha, \beta)})_q$ $\alpha cl(A)$. If $cl(int(p_{(\alpha, \beta)}))_q^c A$ then by Definition 2.9, A $\subseteq [cl(int(p_{(\alpha, \beta)}))]^c$ where $[cl(int(p_{(\alpha, \beta)}))]^c$ is an IFROS. Then by hypothesis, $\alpha cl(A) \subseteq [cl(int(p_{(\alpha, \beta)}))]^c$ $= int(cl(p_{(\alpha, \beta)})^c) \subseteq cl(p_{(\alpha, \beta)})^c = (int(p_{(\alpha, \beta)}))^c$. This implies $\alpha cl(A)_q^c$ $int(p_{(\alpha, \beta)})$. Therefore by Definition 2.9, $int(p_{(\alpha, \beta)})_q^c \alpha cl(A)$, which is a contradiction to the hypothesis. Hence $cl(int(p_{(\alpha, \beta)}))_q A$.

Theorem 3.28: Let $F \subseteq A \subseteq X$ where A is an IFROS and an IFR α GCS in (X, τ). Then F is an IFR α GCS in A if and only if F is an IFR α GCS in (X, τ).

Necessity: Let U be an IFROS in X and $F \subseteq U$. Also let F be an IFR α GCS in A. Then clearly $F \subseteq A \cap U$ and $A \cap U$ is an IFROS in A. Hence the α closure of F in A, α cl_A(F) $\subseteq A \cap U$. By Theorem 3.25, A is an IF α CS. Therefore α cl(A) = A and the α closure of F in X, α cl(F) $\subseteq \alpha$ cl(F) $\cap \alpha$ cl(A) = α cl(F) $\cap A = \alpha$ cl_A(F) $\subseteq A \cap U \subseteq U$. That is α cl(F) $\subseteq U$ whenever $F \subseteq U$. Hence F is an IFR α GCS in A.

Sufficiency: Let V be an IFROS in A such that $F \subseteq V$. Since A is an IFROS in X, V is an IFROS in X. Therefore $\alpha cl(F) \subseteq V$, since F is an IFR α GCS in X. Thus $\alpha cl_A(F) = \alpha cl(F) \cap A \subseteq V \cap A \subseteq V$. Hence F is an IFR α GCS in A.

REFERENCES

- 1. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and system, 1986, 87-96.
- 2. Chang, C.L., "Fuzzy Topological Spaces", J.Math. Anal. Appl. 24 182-190, (1968).
- 3. Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems,1997,81-89.
- 4. Coker, D., and Demirci, M., On intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets 1(1995), 79-84.
- Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. Of Fuzzy Math.,5(1997),365-378.
- 6. Joung kon Jeon, Young Bae Jun and Jin Han Park., Intuitionistic fuzzy alpha continuity and Intuitionistic fuzzy pre continuity, international Journal of Mathematics and Mathematical Sciences, 19(2005),3091-3101.
- 7. Santhi, R., and Sakthivel,K.,Intuitionistic fuzzy almost alpha generalized continuous mapping, Advances in Fuzzy Mathematics, 2(2010),209-219.
- 8. Thakur, S. S., and Rekha Chaturvedi., Regular gerenalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria; Mathematica, 16(2006), 257-272,
- 9. Thakur, S. S., and Singh, S., On Fuzzy Semi-pre open sets and fuzzy semi pre continuity, Fuzzy sets and systems, 1998, 383-391.
- 10. Zadeh, L.H., Fuzzy Sets, Information and Control, 18, 338-353, (1965).

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology